Steve Horn Sedaru

Plymouth County Water Works Asset & Data Management 2019

Steve Horn - Experience

Verizon Wireless

Bag Phones to Digital phones

ChoiceOne Communications

Local, Long Distance, web hosting, web services, web sites

Neptune Technology Group

► Touch Pad to AMR to AMI

Sedaru

Asset and Data Management, predictive analysis, machine learning.....?

Asset Management – EPA/AWWA Data Management – Industry Tools

- Maintaining a desired LEVEL OF SERVICE for your CURRENT STATE OF ASSETS to provide at the LOWEST LIFE CYCLE COST. LLCC refers to the best appropriate cost of rehabilitating, repairing or replacing an asset.
- ► There are 5 Core questions within that framework
 - 1. Current State of Assets
 - 2. Level of Service
 - 3. Critical Assets
 - 4. Minimum Life Cycle Costs
 - 5. Long term Funding

Current state of assets - AM

What to ask?

- What do I own
- Where is it
- Condition?
- Useful life
- Value

What to do.

- Asset Inventory
- Mapping
- Rehab and/or replace
- Values and replacement costs

Collection and Mapping of Data

Assets

- Meters
- Valves
- Hydrants
- Manholes
- Catch basin
- Pipes
- Tanks

What to do.

- ► Testing, replacing, rehabbing
- Exercising
- Inspection and flushing
- Inspections
- Inspections and collections
- Leak and breaks
- Maintaining/cleaning/inspecting

🐼 Sec	daru Studio										adm	ninistrato	r 💽	
SUMMARY USERS coming soon manage sedaru users					Ofiles e app profiles	maps & da configure data sourc	maps & data configure data source		fieldforce mobile data forms & settings		permissions coming soon			
^{fieldforce - eww} 14 work assets (78 total forms)					workorder A map settings settings			s 🕅 🛛 app s 🕅 setting	, []		k tile se			
#	asset	icon	asset layer		his	tory layer	workorders					asset type Hydrants		
1	Cuts	:	Cuts (3)		Cuts history (110)		yes	4		style template 136,0,0	7	work tile icon	Ŷ	
2	Hydrants	Ŷ	Hydrants (7)		Hydrants history (106)		yes			asset map setting Hydrants (7)			டீ	
3	Valves	\bullet	Valves (8)		Valves	history (105)	yes	7		asset history settings Hydrants history (106)				
4	Meters	i	Meters (13)		Meters	history (104)	yes	12		work order settings enabled				
5	Curb Valves	٢	Curb Valves (6)		Curb Valv	res history (120)	yes	10				1		
6	Backflows	6	Backflows (14)		Backflows history (122)		yes	5				$\hat{\mathbf{P}}$		
7	New Service Inspection	ţ,	New Service Inspection (6	511)	New Service Inspection history (120)		yes	3		form designer				
8	New Asset	\$÷	New Asset (51)		New Asset history (151)		yes	8						
9	WQ Device	Ū	WQ Device (11)		WQ Device history (121)		yes	5						
10	Air Valve	Å	Air Valve (10)		Air Valve	Air Valve history (114)		5						
11	Main Break	A	Main Break (2)		Main Break history (126) yes		yes	2						
add work tile iiii delete selected all changes synchronized									updo	ate 💾				
© 2019 Seda	ru, Inc.													

Collecting through smart phones and tying to ESRI Services or other map based software

Sustainable level of Service

What to ask?

- What level do my customers demand?
- What do regulators require?
- Performance metrics
- Capabilities

What to do.

- Analyzing current and anticipated demand
- Understanding Regulatory requirements
- Performance targets
- Level of standards to track performance

Critical Assets in System

What to ask?

- ► How can they fail?
- ► How DO they fail?
- What are likelihoods and consequences?
- What does it cost to repair?
- Other costs social, environmental

What to do.

- Listing critical assets
- Failure analysis
- Probability of failure
- Analyzing failures risks/consequences
- CIP

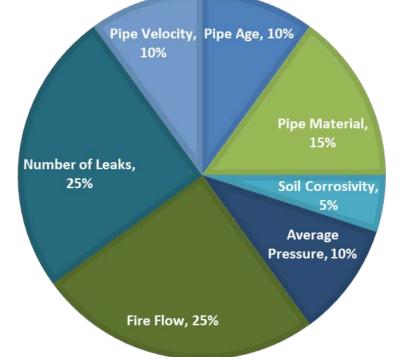
Asset Management Software

Performance

- Pipe Age
- Pipe Material
- Remaining Life
- Soil Corrosivity
- Number of Leaks
- Leaks Per Mile
- Pipe Avg. Pressure
- Pipe Velocity
- Fire Flow

Impact

- Critical Customer
- Diameter
- Customers
- Isolation Valves
- Average Demand
- Street Type



Ease of Collection

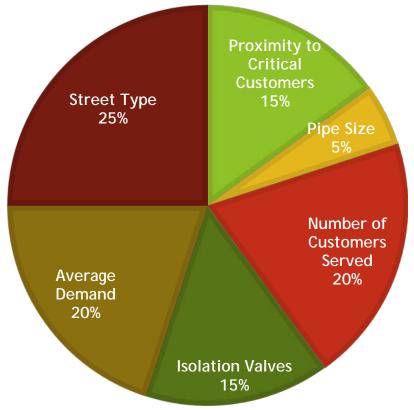
- Tie CardsDigitize them
- Pipe Age

- Leaks Paper format
 - Customers Assessors (water meter bills)
- Demand Scada Information
- These are all EASILY ACCESSIBLE and can be udated quickly
- Everett MA

Condition Assessment Horizontal Assets -Performance Score

Ranked each pipe from 1 to 5 (5 is most in need of upgrade)

Condition Assessment Horizontal Assets



Criticality Assessment Horizontal Assets

- Criticality to normal system operation
- Consequence of failure
- Determined using the Impact Score in CIP

Criticality Assessment Horizontal Assets - Impact Score

Ranked each pipe from 1 to 5 (5 is most in need of upgrade)

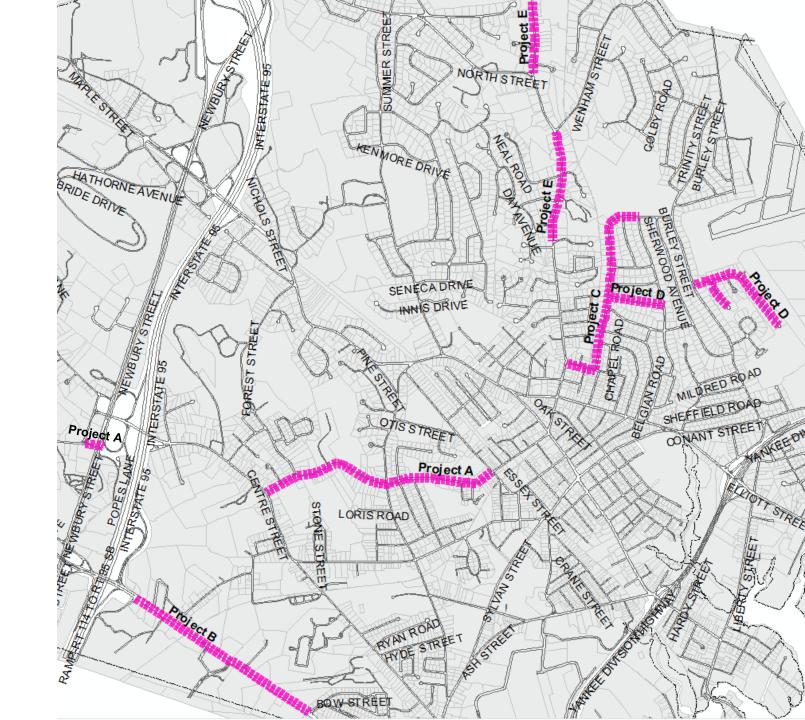
Criticality Assessment Horizontal Assets

Capital Improvement Plans - CIP

- With availability of Data streams can build real time models
- Field Office Personnel Superintendents -Engineering - Public Works
- ▶ Ties in all " Data Silos"
- Predictive and Pro-Active
- Better budgeting

Life Cycle Costs

What to ask?


- What strategies existing for managing O&M, personnel and capital budgets
- Most feasible strategy
- What are the costs?

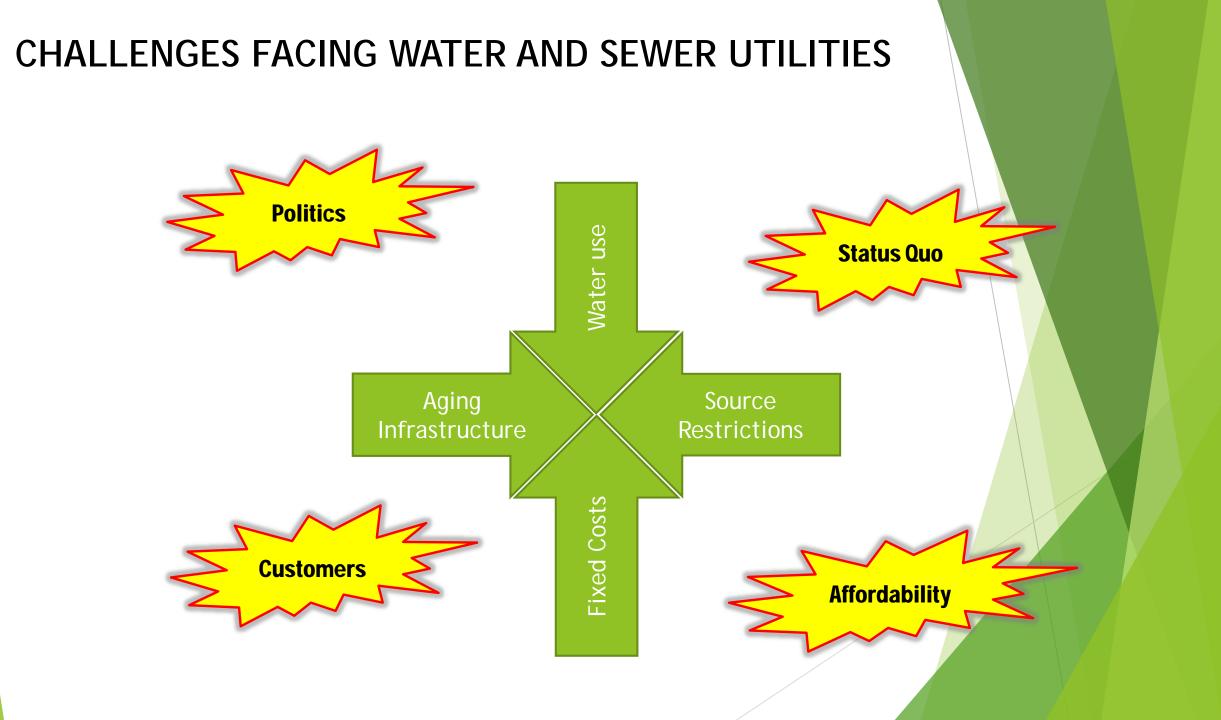
What to do.

- Reactive to predictive maintenance
- Rehab or replace?
- Life Cycle Costs
- Deploying personnel resources
- Develop a response plan

20-Year CIP Horizontal Assets

Phase 1 Years 1-5

20- Year CIP Phase 1											
Project	Street	Number of Breaks	Road Surface Rating (RSR)	Project Extents	Existing Size	Proposed New Size	Project Length (l.f.)	Replacement Cost per l.f.	Estimated Paving Cost	Projected Project Cost	
Project A	Hobart St.	12	64	Centre St. to Pine St. Pine St. to Pickering St.	10-inch	12-inch	5300	\$380	\$290,900	\$2,304,900	
Project A	Centre St.	1	80	Armory Rd. to Rt. 1	10-inch	12-inch	400	\$380	\$21,300	\$173,300	
									Project A total	\$2,478,200	
Project B	Andover St.	20	n/a	Interstate 95 to MacArthur Blvd.	8-inch	12-inch	4500	\$395	\$154,700	\$1,932,200	
									Project B total	\$1,932,200	
Project C	Cabot Rd.	12	58	Chestnut St. to Mass Ave.	8-Inch	12-inch	3500	\$405	\$232,700	\$ <mark>1,650,200</mark>	
Project C	Chestnut St.	0	64	Cabot Rd. to Locust St.	6-inch	12-inch	650	\$405	\$63,100	<mark>\$326,350</mark>	
									Project C total	\$1,976,550	
Project D	Cornell Rd.	3	11	Burley St. to end	10-inch	12-inch	2500	\$420	\$136,800	\$1, <mark>186,800</mark>	
Project D	Oberlin Rd.	4	17	Cornell Rd. to end	8-inch	8-inch	700	\$255	\$33,700	\$ <mark>212,200</mark>	
Project D	Amherst St.	1	35	Cabot Rd. to Mass Ave.	6-inch	8-inch	1200	\$255	\$70,400	\$376,400	
									Project D total	\$1,775,400	
Project E	Locust St.	12	60	North St. to Holly Hill Wenham St. to Surrey Ln.	8-inch	12-inch	4000	\$500	\$193,900	\$2,193,900	
									Project E total	\$2,193,900	
									PHASE 1 TOTAL	\$10,356,250	


Funding strategy

What to ask?

- Do we have enough funding to maintain our required level of services?
- Is our rate structure sustainable for our needs?

What to do.

- Revise the rate structure
- Funding from reserves
- Financing through borrowing or grants
- Test Meters
- Replace meters

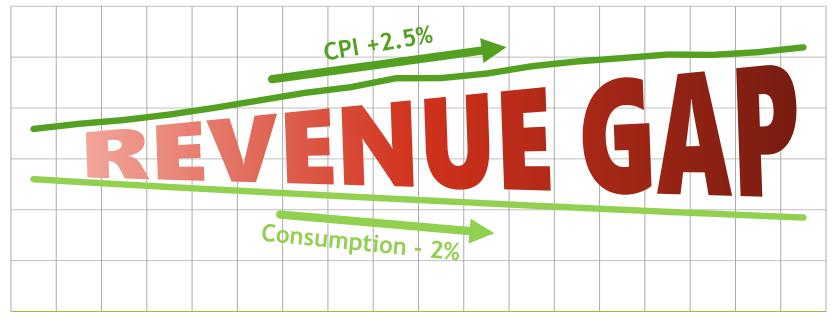
THE PURPOSE OF WATER AND SEWER RATES

To provide a dependable and sustainable revenue source to support the full cost of service.

Full Cost of Service:

- All positions are filled
- All required operational duties being completed
- Full awareness of system needs and limitations
- Annual capital investment included in budgets

Capital Improvements are the single biggest driver of rate increases.


How to Fund Projects

- MassDEP Grants
- ► EPA Grants
- MassGov Grants
- Capital planning Budgets

Decreasing Unaccounted Water

Increasing Water rates

The consequences of decreasing consumption (doing nothing costs money)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Water Revenue - " a Tale of a City "

Water & Sewer revenues	\$ 17,800,000
Unaccounted for Water	24 %
AWWA Goal	10%
Finding the 14 %	\$ 1,5308,000
Water rate (normal)	\$ 11.40 100CF

Auburn Water and Sewer District C&I Meter Changeout

- Changed out 25 of their top accounts
- Saw an average of 20% increase in consumption for accounts
- Consumption in 1Q 2008 9,717,702
- Consumption in 1Q 2009 100,877,313
- Revenue is 1Q 2009 \$125,524
- Revenue in 1Q 2009 \$150,511
- Payback time for project = 2.2 months

AWWA Standards

▶ 5/8 to 1 " meter

15 - 20 years life

► 1 ½ & 2″ Test every 5 years

Test every 4 years

▶ 4″ and above

> 3″

Test Every year

*** Commercial Meters usually represent 20% of revenue

Touch Read - 1985

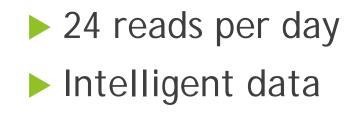
All Solid State

- Digital Transfer of Data from Register to Billing Software
- Highly Reliable

- Still Requires "Walking The Route"
 - Labor Costs
 - ► Wear & Tear on Vehicle
 - Safety Factors for Meter Reading People

Walk-By to Drive By

- Much Faster Walk or Drive By House
 - Reduced Labor Costs



- Extremely Fast!
 - 500 to 1000 Readings per hour is typical
- More Frequent Readings Possible
 - Faster cash flow
 - Smaller incremental bills to customers
 - Reduces Delinquencies

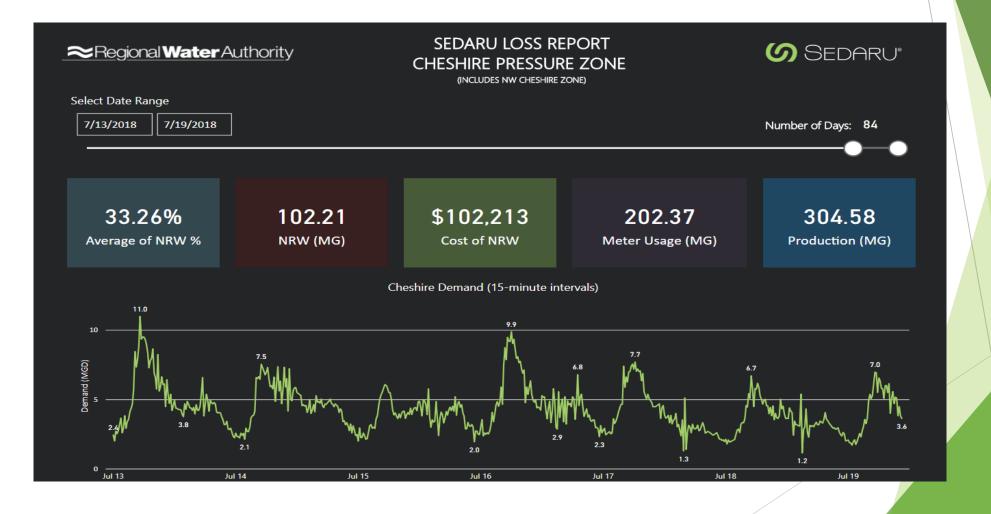
Fixed Base Radio Reading

- No Labor for Reading Meters!
- Daily Readings Possible
 - Large Industrial Accounts
 - Water Leak Detections
- Cash Flow Improvements
- Water System Control
 - Compare Consumption with Production
 - Safest for Personnel

- Alarms to monitor the application as well as the health of the iPERL
- Available for reporting:
- Can detect
 - Reverse flow
 - Tamper
 - Empty pipe
 - Leak
- Lifetime alarms
 - 6 month
 - 1 month
 - Battery failure

- Condition monitoring alarms
 - High temperature
 - Low field
 - High current
 - Glide slope
 - ADC failure
 - Touchread failure
 - EMF range

DATA SILO - What do I do now?


Data Received

- 24 reads per meter per day
- Leak detection
- Zero Consumption
- Backflows
- ► High Consumption

What to do?

- Gallons Used per day
- Identify and fix leaks
- Broken or theft?
- Safety in water system
- Major break?

Have a pro-active system for efficiency

Water Meters - Asset and Revenue

- Test your water meters
- Obtain wealth of data on a daily basis
- Be pro-active with your system
- Build your revenues
- Better Data throughout across all departments
- Evaluate water rates
- Build better Modeling
- Build better CIP's

- https://www.mass.gov/files/documents/2017/01/wc/011717-costsregulation-and-financing-of-mass-water-infrastructure-implications-formunicipal
- https://www.mass.gov/service-details/public-water-supply-tools-resourcesperformance-standards
- https://www.mass.gov/doc/residential-gallons-per-capita-day-spreadsheet
- www.awwa.com

Thank you